
Phase transition of clock models on a hyperbolic lattice studied by corner transfer matrix
renormalization group method

A. Gendiar,1 R. Krcmar,1 K. Ueda,2 and T. Nishino2

1Institute of Electrical Engineering, Centre of Excellence CENG, Slovak Academy of Sciences, Dúbravská cesta 9,
SK-841 04, Bratislava, Slovakia

2Department of Physics, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
�Received 7 January 2008; revised manuscript received 31 March 2008; published 23 April 2008�

Two-dimensional ferromagnetic N-state clock models are studied on a hyperbolic lattice represented by
tessellation of pentagons. The lattice lies on the hyperbolic plane with a constant negative scalar curvature. We
observe the spontaneous magnetization, the internal energy, and the specific heat at the center of sufficiently
large systems, where fixed boundary conditions are imposed, for the cases N�3 up to N=30. The model with
N=3, which is equivalent to the three-state Potts model on the hyperbolic lattice, exhibits a first-order phase
transition. A mean-field-like phase transition of second order is observed for the cases N�4. When N�5 we
observe a Schottky-type specific heat below the transition temperature, where its peak height at low tempera-
tures scales as N−2. From these facts we conclude that the phase transition of the classical XY model deep
inside hyperbolic lattices is not of the Berezinskii-Kosterlitz-Thouless type.
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I. INTRODUCTION

Two-dimensional �2D� lattice models with continuous lo-
cal spin symmetry, such as the classical XY model and the
classical Heisenberg model on the square lattice, do not have
finite magnetization when temperature is finite. This fact
proved by Mermin and Wagner �1� does not exclude the
presence of a phase transition of the Berezinskii-Kosterlitz-
Thouless �BKT� type �2,3�. These well-known facts are
based on analysis in the flat 2D plane.

Quite recently, Baek et al. studied the XY model on the
heptagonal lattice �4�, which is one of the hyperbolic lattices
constructed as a tessellation of heptagons on the hyperbolic
plane, i.e., the 2D space with a constant negative curvature
�5�. By way of Monte Carlo �MC� simulations for open
boundary systems, they concluded the absence of a phase
transition, including that of the BKT type. Their result is in
accordance with the thermodynamic properties of the Ising
model on the hyperbolic lattice, where there is no singularity
in the specific heat, as shown by d’Auriac et al. �6�. These
observations on the hyperbolic lattice can be explained by
the non-negligible effect of the system boundary �7,8�, which
always contains a finite portion of the system regardless of
the system size.

It should be noted, as pointed out by d’Auriac et al., that
the presence of an ordered phase is not excluded in the re-
gion far from the boundary �6�, although the area of such an
ordered region is negligibly small compared with the whole
system on the hyperbolic lattice. The situation is similar to
that of statistical models on the Cayley tree, where the region
deep inside can be regarded as a Bethe lattice �9�. Shima et
al. studied the Ising model on a hyperbolic lattice by MC
simulations, and observed a mean-field-like phase transition
deep inside the system �10,11�. The mean-field behavior is in
accordance with theoretical studies of phase transitions in
infinitely large hyperbolic lattices �12,13�. It can be expected
that such an order also appears in the case of the XY and
clock models.

In this paper we study �N ��3��-state clock models on
the pentagonal lattice �14� up to N=30 by use of the corner
transfer matrix renormalization group �CTMRG� method
�15–17� modified for systems on hyperbolic lattices �18,19�.
The internal energy and the spontaneous magnetization at the
center of sufficiently large systems are calculated numeri-
cally. In order to judge the presence of an ordered state deep
inside the system, we impose ferromagnetic boundary condi-
tions at the beginning of the iterative calculation of the CT-
MRG method. As we show in the following, the results ob-
tained support the existence of a mean-field-like phase
transition for all N even in the limit N→�, where the system
coincides with the classical XY model.

In the next section we introduce geometry of the pentago-
nal lattice and consider the N-state clock model on it. A brief
explanation of the CTMRG method is presented. In Sec. III
we show numerical results for the spontaneous magnetiza-
tion, the internal energy, and the specific heat. We summarize
the observed phase transition.

II. CLOCK MODELS ON A PENTAGONAL LATTICE

We consider the 2D lattice shown in Fig. 1, which is a
tessellation of regular pentagons. The lattice is in a curved
plane with a constant negative scalar curvature. Therefore,
the Hausdorff dimension of the lattice is infinite. For a tech-
nical reason in the CTMRG method, we have chosen a lattice
with the coordination number 4 �14�. Two geodesics drawn
by the thick arcs cross one another at a site labeled by �1. By
these two arcs the whole lattice is divided into four equiva-
lent parts called the quadrants or corners.

Let us introduce the N-state clock model on the pentago-
nal lattice. On each lattice site there is an N-state spin vari-
able �i where i is the site index. The possible values of �i are
2�� /N with �=0,1 ,2 , . . . ,N−1. We consider the angle �i as
the internal degree of freedom. Therefore, �i has nothing to
do with the lattice geometry. If there are only ferromagnetic
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interactions between neighboring spin pairs, the Hamiltonian
of the N-state clock model is written as

H = − J�
�ij�

cos��i − � j� , �1�

where J�0 is the coupling constant. The summation runs
over all the nearest-neighbor pairs �ij�. The case N=2 is
nothing but the Ising model with coupling interaction J and
this case has been studied �18,19�. The case N=4 can be
reduced to the Ising model with the coupling J /2. We thus
chiefly discuss the case N=3, which is equivalent to the
three-state Potts model, and the cases N�5 in the following.
In order to observe the phase transition deep inside the sys-
tem, we impose ferromagnetic boundary conditions so that
all the spin variables at the system boundary are aligned in
the direction �=0.

For convenience we represent this clock model as a spe-
cial case of the interaction-round-a-face �IRF� model on the
hyperbolic lattice. For instance, let us label the spins around
a pentagon as shown in Fig. 1. The IRF weight W, which is
the local Boltzmann weight corresponding to this pentagon,
is obtained as

W��1�2�3�4�5� = �
i=1

5

exp	 J cos��i − �i+1�
2kBT


 , �2�

where �6��1. Having the IRF weight W thus defined, we
can express the partition function of the whole system as

Z = �
��


� W , �3�

where the product is taken for all the IRF weights in the
pentagonal lattice. The sum ���
 is taken over all spin con-
figurations.

In order to discuss the phase transition on the hyperbolic
lattice, let us consider a system whose size �or diameter� L is
far larger than the correlation length �. We divide the system
into two parts, the boundary area �BA� and the deep inside
area �DIA�. The former, the BA, is a ring-shaped area, where
all the sites in the area are within a distance of the order of �
from the system boundary. The latter, the DIA, is the rest of
the system, which we analyze in the following. Because of

the hyperbolic geometry, the portion of the BA with respect
to the whole system is always finite even in the limit L
→�. The situation is similar to that of the Cayley tree �9�.
Thus the thermodynamic properties of the whole system are
always affected by the boundary conditions, especially at
low temperature �7,8�. When � is finite, it is possible to con-
sider the thermodynamics of the DIA, discarding the thermo-
dynamic contribution from the BA, since we have assumed
L	� and therefore the size of the DIA is sufficiently large.
When we collect numerical data for the DIA, we always treat
sufficiently large systems that satisfy L	�, choosing tem-
peratures for which � is at most of the order of 1000. We then
detect the phase transition in the DIA by extrapolation from
both low- and high-temperature sides.

We introduce Baxter’s corner transfer matrix �CTM� C,
which represents the Boltzmann weight of a quadrant of the
system �9�. The partition function Z is then expressed as
Tr C4, i.e., as the trace of the density matrix 
=C4. Applying
the concept of density matrix renormalization �20–22�, a pre-
cise approximation of Z can be obtained for large-scale sys-
tems by way of iterative numerical calculations �15–17�.
This is the outline of the CTMRG method, which can be
applied to statistical models on hyperbolic lattices �18,19�.

After we obtain the density matrix 
 for a sufficiently
large system, we can calculate the expectation values at the
center of the system, which represent the thermodynamics
deep inside the system. For example, we can obtain the spon-
taneous magnetization

M�N� = Tr�cos��c�
�/Tr
 , �4�

where �c represents the spin at the center of the system, and
the internal energy per bond

E�N� = − JTr�cos��c − �c��
�/Tr
 , �5�

where �c� is the neighboring spin next to �c. The specific heat
C�N� can be obtained by taking the numerical derivative of
E�N� with respect to temperature T. It should be noted that
M�N�, E�N�, and C�N� are not thermodynamic functions of the
whole system but are those of the area deep inside the sys-
tem.

It is known that the decay of the density matrix eigenval-
ues is very fast for models on hyperbolic lattices �18,19�. The
clock model under study has the same feature. Therefore, it
is sufficient to keep a very small number of the degrees of
freedom for the block spin variable m in the formalism of
CTMRG. Typically, we keep m�2N states. We checked that
further increase of m does not improve numerical precision
in M�N� and E�N� any more, even in the vicinity of the phase
transition.

III. NUMERICAL RESULTS

Throughout this section, we take the coupling constant J
in Eq. �1� as the unit of energy. For all cases N�2, we
observe a phase transition, where the transition temperatures
T0

�N� are listed in Table I. Note that T0
�N� converges to T0

���

very fast with respect to N.
Figure 2 shows the spontaneous magnetization M�N� with

respect to the rescaled temperature T /T0
�N�. �Under this res-
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FIG. 1. Pentagonal lattice drawn on the Poincaré disk. The open
circles represent the N-state spin variables �i. Two geodesics drawn
by thick arcs divide the system into four equivalent quadrants.
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caling, M�2� and M�4� are identical.� If N=3, the magneti-
zation is discontinuous at T0

�3�. The three-state clock model,
which is equivalent to the three-state Potts model, exhibits a
first-order phase transition if the system is on a pentagonal
lattice. This is a kind of mean-field behavior, since it is well
known that the mean-field approximation applied to the
three-state Potts model on 2D lattices shows a first-order
phase transition �23�. In the vicinity of T0

�N� the magnetization
M�N� rapidly converges to the large-N limit M���. The inset
of Fig. 2 displays the low-temperature behavior of M�N� in
detail. Note that in the limit N→� the magnetization M�N�

decreases linearly with T at very low temperatures. Figure 3
shows the square of M�N� with respect to t= �T0

�N�−T� /T0
�N�

for cases other than N=3. It is obvious that the scaling rela-
tion M�N�� t� is satisfied with the exponent �= 1

2 .
Figure 4 shows the internal energy E�N�. There is a finite

jump in E�3� at T0
�3�, where the latent heat per bond L=E+

�3�

−E−
�3� is 0.078. Analogously to the magnetization M�N�, E�N�

is linear in T in the low-temperature region in the limit N
→�.

Figure 5 shows the rescaled specific heat C�N� /Cmax
�N� ,

where Cmax
�N� is the specific heat at T0

�N�, with respect to the
rescaled temperature T /T0

�N�. Evidently, a discontinuity in the
specific heat is observed for the cases N=2 and N�4. Thus,
the second-order phase transition has mean-field nature.
There is no indication of the BKT transition that is observed
for clock models on flat 2D lattices �24�.

When N is larger than 5, we observe a Schottky-type peak
in the specific heat. Figure 6 shows the N dependence of the
Schottky peak position, TSch

�N� . As is shown, TSch
�N� is propor-

tional to 1 /N2. This is qualitatively in accordance with the
energy scale of local excitation 2�2� /N�2J from the com-
pletely ordered state. It is thus concluded that the Schottky
peak disappears in the limit N→� and that the specific heat
of the classical XY model on the pentagonal lattice remains
finite even at T=0.

IV. CONCLUSIONS

We have studied N-state clock models on a pentagonal
lattice, which is a typical example of hyperbolic lattices. The
phase transition deep inside the system is observed by use of
the CTMRG method. From the critical exponent �= 1

2 for the
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FIG. 4. Absolute value of the internal energy �E�N��. The open
circles denote the jump in the case N=3.

TABLE I. The transition temperatures T0
�N�, the critical expo-

nents �, and the positions of the specific heat maximum TSch
�N� .

N T0
�N� � TSch

�N�

2 2.7991 0.5

3 1.6817

4 1.3995 0.5

5 1.3659 0.5

6 1.3625 0.5 0.62948

7 1.3623 0.5 0.46295

8 1.3622 0.5 0.35676

9 1.3622 0.5 0.28357

10 1.3622 0.5 0.22997

13 1.3622 0.5 0.13761

20 1.3622 0.5 0.05864

30 1.3622 0.5 0.02600
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FIG. 2. Temperature dependence of the spontaneous magnetiza-
tion M�N� for 3
N
30. The open circle denotes the discontinuity
in M�3�.
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spontaneous magnetization and the jump in the specific heat,
we conclude that the phase transition for N=2 and N�4 is
mean-field-like, provided that ferromagnetic boundary con-
ditions are imposed. The Hausdorff dimension, which is in-
finite for hyperbolic lattices, is essential in the observed criti-
cal behavior. We conjecture that a phase transition deep
inside the system is also present for systems with free bound-
ary conditions.

In the case when N=3, where the system is equivalent to
the three-state Potts model, we observed a first-order phase
transition. Since the q-state Potts model tends to exhibit a
first-order transition for larger q �23�, it is expected that the
transition of q�3 Potts models on a pentagonal lattice is of
first order. We have partially confirmed the behavior for sev-
eral values of q and we conjecture that the transition is of the
first order on any kind of hyperbolic lattice when q�3.

We observed stable ferromagnetic states below T0
�N� even

in the continuous limit N→�. This fact does not contradict
the Mermin-Wagner theorem �1� since the pentagonal lattice
is not on a flat 2D plane. The vortex energy on hyperbolic
lattices might be larger than that on a flat lattice. The differ-
ence may explain the absence of the BKT phase transition on
a pentagonal lattice.
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